Safety Considerations for Cerebellar Theta Burst Stimulation

 

SOURCE
Clinical Therapeutics. 42(7):1169-1190.e1, 2020 07.

AUTHORS
Hurtado-Puerto AM; Nestor K; Eldaief M; Camprodon JA.

PURPOSE
The cerebellum is an intricate neural structure that orchestrates various cognitive and behavioral functions. In recent years, there has been an increasing interest in neuromodulation of the cerebellum with transcranial magnetic stimulation (TMS) for therapeutic and basic science applications. Theta burst stimulation (TBS) is an efficient and powerful TMS protocol that is able to induce longer-lasting effects with shorter stimulation times compared with traditional TMS. Parameters for cerebellar TBS are traditionally framed in the bounds of TBS to the cerebral cortex, even when the 2 have distinct histologic, anatomical, and functional characteristics. Tolerability limits have not been systematically explored in the literature for this specific application. Therefore, we aimed to determine the stimulation parameters that have been used for cerebellar TBS to date and evaluate adverse events and adverse effects related to stimulation parameters.

METHODS
We used PubMed to perform a critical review of the literature based on a systematic review of original research studies published between September 2008 and November 2019 that reported on cerebellar TBS. We recovered information from these publications and communication with authors about the stimulation parameters used and the occurrence of adverse events.

FINDINGS
We identified 61 research articles on interventions of TBS to the cerebellum. These articles described 3176 active sessions of cerebellar TBS in 1203 individuals, including healthy participants and patients with various neurologic conditions, including brain injuries. Some studies used substantial doses (eg, pulse intensity and number of pulses) in short periods. No serious adverse events were reported. The specific number of patients who experienced adverse events was established for 48 studies. The risk of an adverse event in this population (n = 885) was 4.1%. Adverse events consisted mostly of discomfort attributable to involuntary muscle contractions. Authors used a variety of methods for calculating stimulation dosages, ranging from the long-established reference of electromyography of a hand muscle to techniques that atone for some of the differences between cerebrum and cerebellum.

IMPLICATIONS
No serious adverse events have been reported for cerebellar TBS. There is no substantial evidence of a tolerable maximal-efficacy stimulation dose in humans. There is no assurance of equivalence in the translation of cortical excitability and stimulation intensities from the cerebral cortex to cerebellar regions. Further research for the stimulation dose in cerebellar TBS is warranted, along with consistent report of adverse events.